Precision Photometric Redshifts for Cosmology

P. Capak

D. Masters, S. Hemmati, D. Stern, J. Rhodes, O. Ilbert, S. Lilly, H. Hildebrandt, J. Coupon, C. Steinhardt

Goal

- Develop an optimal spectroscopic calibration strategy for WFIRST
 - Photo-z is measured from colors
 - We do not care about individual objects
 - Need redshift distributions for well defined samples
- Use machine learning to map the color space with an optimal grid
 - Ensure the spectroscopy represents the colors
- Already being developed for Euclid
 - Apply and extend this to WFIRST

SOM Method

Self Organizing Maps (SOM): an unsupervised neural network method of mapping topology

- current Self Organizing Map
 - 1. Initialized map is presented with training data, i.e. the colors of one galaxy from the overall sample.
 - 2. Map moves towards training data, with the closest cells being most affected.
 - Process repeats many times with samples drawn from training set until the map approximates the data distribution well.

SOM Method

Masters et al. 2015

SOM Method

- Can visualize the 7-dimentional color data
- Test if the analytic model fits
- Test where the data driven model is valid
- Target grey areas with spectroscopy

Spec-z's across the shallower *Euclid* map at different confidence levels

At low confidence there appear to be very few Unknown-Unknowns. Main problem is getting high-confidence redshifts.

Preliminary test of SOM calibration

- Very preliminary test
 - Use median photo-z + existing spec-z
 - Ones shown here not used for calibration
 - Using only u,g,r,l,z,Y,J,H photometry
 - Monte-Carlo photometric errors of objects onto SOM
- Outlier fraction 1.5%
- Sigma_NMAD=0.02
- Bias = 0.004
- Many problems with this test
 - No interpolation
 - Not enough spec-z
 - Did not use full PDF
- Overall very promising
- Have also used SOM as a prior on SED fitting
 - Significantly improved results

The Keck Complete Calibration of the Color-Redshift Relation (C3R2) Survey

- Sustained effort to map out the color-redshift relation of galaxies expected in the Euclid weak lensing sample (subset of WFIRST sample)
- 10 nights from NASA (5 each in 2016B and 2017B) as a Key Strategic Mission Support (KSMS) Proposal (PLD. Stern)
- 5 nights from Caltech in 2016A (PI J. Cohen), will re-apply
- Use Keck DEIMOS/MOSFIRE/LRIS multislit spectrometers to systematically map the color-redshift relation
- Optimal instrument and exposure time for targets are estimated based on SED, photo-z, magnitude, and existing spectra
- Currently have observed 4 nights (3 nights DEIMOS, 1 night MOSFIRE) with good conditions, ~500 high quality redshifts

Redshift results from Dec. 13, 2015 run

Redshift success as a function of magnitude and z-phot

- Total of 383 spectra taken with DEIMOS, with success rate of ~63%
- Success rate not a strong function of galaxy magnitude or redshift
- Most failures were "expected", objects too faint or at wrong redshift
- Importantly, we can keep track of where and why in parameter space we fail

Preliminary WFIRST SOM

- Based on SPLASH data, Higher-D
 - U,g,r,I,z,Y,J,H,K,ch1,ch2
- Similar to EUCLID SOM
 - Larger fraction of cells do not have spec-z at high-confidence
- Many of the cells that do have spec-z have fainter median mag
 - Need to test for "conformity" of fainter objects compared to brighter ones
- Will use CANDELS data for WFIRST like SOM in near future
 - How does volume of galaxy color space expand as we move to fainter magnitudes?
- If the volume of color space increases rapidly at faint magnitudes, the problem is harder
 - Need to quantify how to to expand SOM points

Challenge for WFIRST calibration: Growth of galaxy multicolor space with depth

- Distribution of galaxies in multi-color space grows significantly as the depth increases
- More spectra are needed to fully explore the space
- Moreover, the spectra become very challenging to obtain
- Need to check against lending cuts

Planned Milestones

- June 2015 Collect Photometry
- July 2015 Clean training sample
- Dec 2015 Create preliminary map
- March 2016 Finish map testing
- June 2016 Collect and validate existing spectra
- Aug 2016 Compare photo-z and spec-z map, determine spectroscopic needs
- Sept 2016 Determine final metric for WFIRST spectroscopy
- Feb 2016 June 2017 Collect new spectra following strategy
- June 2017 Compare with new spectra

Actual Milestones

- June 2015 Collect Photometry
- July 2015 Clean training sample
- Aug 2016 -> Aug 2015 Compare photo-z and spec-z map, determine spectroscopic needs (Ongoing)
- Dec 2015 Create preliminary map
- Feb 2016 -> Dec 2015 June 2017 Collect new spectra following strategy
- June 2017 -> Jan 2015 Test new spectra (Ongoing)
- March 2016 -> April 2016 Finish map testing, moved to allow for analysis of new spectra
- June 2016 -> July 2016 Collect and validate existing 1d/2d spectra, moved to co-encode with Euclid database development
- Sept 2016 Determine final metric for WFIRST spectroscopy
- Oct 2016 -> June 2017 Determine if fainter WFIRST objects are "conformal" with brighter objects

Conclusions

- SOM method appears to be working
 - Significantly improves photo-z
 - Accurately predicts Galaxy types and spectra needed
- Started obtaining spectra for WFIRST/Euclid
 - Just (Monday) completed first 4 nights of Keck
 - Meeting expected metrics
- Need to quantify how to adjust SOM for WFIRST
 - Bigger color volume how many SOM cells needed?
 - What to do with fainter cells of same color

WPS telecon 14